Slide 1 Slide 2 Slide 3 Slide 4 Slide 5 Slide 6 Slide 7 Slide 8 Slide 9 Slide 10 Slide 11 Slide 12 Slide 13 Slide 14 Slide 15 Slide 16 Slide 17 Slide 18 Slide 19 Slide 20 Slide 21 Slide 22 Slide 23 Slide 24 Slide 25 Slide 26 Slide 27 Slide 28 Slide 29 Slide 30 Slide 31 Slide 32 Product List
LED Lighting Driver Solutions Slide 24
The design can also be optimized for different parameters using the optimization dial provided. Here is a summary of optimizations done on a buck controller design. In general, at a high optimization number, the frequency is lower, which causes lower AC switching losses. However, it also requires more inductance to limit the ripple current. This results in a larger inductor due to the higher number of turns required and larger overall footprint. At the lower optimization settings, the opposite is true. Higher frequency requires less inductance and thus results in smaller inductors and lower overall footprint. There are additional factors being weighed in the selection process including parasitic resistance (ESR, DCR), component cost, and availability.
PTM Published on: 2015-06-12