了解、选择和使用无源示波器探头
投稿人:DigiKey 北美编辑
2017-07-12
编者按: 探头将示波器的输入端连接到受测试器件 (DUT) 上的测试点。探头分为很多类型,包括:高阻抗无源、低电容、单端有源、差分有源、高电压和电流探头。本文是有关探头选择和应用的三篇系列文章的第一篇,重点介绍无源探头。 第 2 部分和第 3 部分将分别介绍有源探头和电流探头。
无源探头是一种将示波器连接到受测试器件或电路的很好方法。它们具有低成本和高可靠性的优点,当正确使用时,还提供合理的信号完整性。本文将从工作原理入手,通过基本调节和使用,对无源探头进行探讨。我们将讨论影响正确测量的无源探头特征,旨在了解这些装置的最有效应用。
示波器通常提供 50 Ω 或 1 MΩ 的输入端接。50 Ω 端接通常与匹配的同轴电缆配合使用,以连接到带 50 Ω 电流源的电路元件。这样,不但可以实现高质量的互连,而且只产生最小的信号失真。使用 1 MΩ 输入端接来连接电路时,源阻抗更高。这种连接可以通过多种方式实现,包括直接使用电缆或 X1 探头,或者使用高阻抗探头(图 1)。
图 1: 将信号连接到示波器的 1 MΩ 输入端时,直接连接 (a) 与使用高阻抗探头 (b) 进行连接的电路简化图。(图片来源:DigiKey)
1 MΩ 输入端还包括从 15 至 25 pF 的分路电容。使用直接连接时,不匹配的电缆会增加额外的电容,每英尺电缆长度增加 10 至 30 微微法拉 (pF)。在 3 英尺长度电缆的典型情况下,电缆的探头端的负载为 1 MΩ,并联电容大约为 90 pF(图 1a)。对于低频率测量,电容负载可以忽略不计。例如,在 1 kHz 的频率下,容抗约为 1.8 MΩ。但是,对于更高频率的信号,效果会很差。在 100 MHz 的频率下,容抗降低至大约 18 Ω,这将大幅衰减信号。
如高阻抗探头(图 1b)所示可以减小示波器和连接电缆的输入电容的影响。此探头基本上是补偿衰减器。输入电阻器,标称为 9 MΩ,形成 10:1 衰减器,示波器使用 1 MΩ 输入端接。电容器 Cin 和 Ccomp 被用于补偿衰减器,并形成全通网络。当 Cin 和 Rin 的 RC 乘积等于 Ro 的 RC 乘积以及 Cin 和 Ccomp 的电缆电容的总和时,补偿比较理想。Ccomp 用于调节补偿。输入端的电容取决于 Cin,约为电路中的其他电容器的总和的十分之一。在本例中大约为 10 pF。
高阻抗无源探头
几乎所有主要示波器供应商都在他们的设备中包括了一系列高阻抗探头。 Teledyne LeCroy 的 HDO4104A 四通道、1 GHz 示波器带有四个 PP018-1 探头。它们是 10:1 高阻抗无源探头,带宽为 500 MHz,输入电容为 10 pF。这些探头可处理至少 350 Vrms 的输入电压。
图 2: PP018 高阻抗探头的带宽为 500 MHz,输入电容为 10 pF。此处还显示了它附带提供的配件。(图片来源: Teledyne LeCroy)
大多数无源探头使用衰减检测引脚,通知示波器自动缩放波形,而无需用户输入。
高阻抗探头的低频率补偿
高阻抗探头通过低频率补偿过程,与它们连接到的通道相匹配。对于这个过程,所有示波器都提供低频率方波,一般频率为 1 kHz,通常称为 CAL 输出。要利用这项功能,请首先将探头连接到所需的通道,然后将探头尖端连接到 CAL 输出端。触发示波器并在屏幕上查看选定通道轨迹。使用调节工具,在探头连接器盒中更改补偿调节,以获取方波轨迹上的方角,如中间的轨迹所示(图 3)。
图 3: 通过调节补偿调节,获取 CAL 方波上的方角,对探头进行低频补偿,如中间的轨迹所示。(图片来源:DigiKey)
每当探头连接到不同通道时,就应该进行补偿,特别是在任何关键测量之前。很多高阻抗探头还提供高频补偿调节。通常不需要执行这种调节。探头手册提供了此测试的详细信息。
智能探测
要正确应用高阻抗探头,必须注意它的基本原理,避免导致测量的波形出现失真。例如,探头的输入电容将对测量产生什么影响?
为了找到问题答案,请计算探头在信号的最高频率分量处的容抗 (1/2πfCin)。受测试电路是否支持该负载?如果支持,请继续测试。如果不支持,请寻找不同的探测解决方案,例如有源探头(本系列文章的第 2 部分)。一条很好的经验法则是,高阻抗探头的使用应限于 25 MHz 以下频率的信号。探头手册通常提供了探头输入阻抗与频率的曲线图,以帮助评估探头在任何特定频率下的适用性。
探头配件也可能导致问题,特别是在高频率下。一种情况是接地引线电感。图 2 显示的接地引线长度约为 4.3 英寸 (11 cm)。它有很大的电感。当探头连接时,电感两端的任何电压都将与信号串行。让接地路径长度尽可能短是可取的做法。为此,探头附带提供了多种配件。其中包括探头尖端接地和 BNC 适配器,可用于这种目的。图 4 比较了使用不同接地配件来测量阶跃信号的结果,上升时间为 3 纳秒 (ns)。
图 4: 显示接地引线电感对信号的影响:让接地引线尽可能短是可取的做法,因为它与信号串行产生电感。(图片来源:DigiKey)
图 4 中的黄色轨迹是来自发生器的信号,它使用 50 Ω 输入端接进行测量得到,将作为信号质量的基准。红色轨迹为使用 11 cm 接地引线的结果。引线电感两端形成的信号的高频分量导致了可观察到的波形过冲。探头尖端接地和 BNC 适配器具有大致相同的响应,但过冲却小得多,因为接地路径长度更短,且各自串联电感也比较低。
正如上文所述,只有在信号具有很大的高频分量时,才会出现这种效果。如果使用正弦波进行相同的测量,差异可能根本不明显。在使用探头时,请牢记这些效应。
探头配件及其用途
表 1 列出了 PP018-1-ND 探头附带提供的配件及其用途。
|
表 1: PP018 探头附带提供的配件及其用途(请参考图 2)。(信息来源: DigiKey)。
为示波器选择备选探头
有些时候,测量应用可能需要不同的示波器探头。例如,电源测试既需要直接连接,以便进行纹波测量,又需要 x10 高阻抗探头,以便测量电压轨。如果必须在两个探头之间切换,那将会耗费很多时间,但 DigiKey 列出了多个 x1/x10 可切换探头。这意味着用户无需更换探头,但如何确定适当的替代探头呢?
第一个步骤是确定测量所需的带宽。在本例中,100 MHz 以下的探头带宽即可满足需求。确定探头的最大额定电压,以确保它符合测量要求。最后,确认示波器的输入电容在探头 x10 规范的补偿范围内。
SP300B x1/x10 可切换探头非常适合与具有 15 pF 输入电容的 HDO 4104A 示波器配合使用,带宽为 300 MHz,最大输入为 300 伏特,补偿范围为 10 至 35 pF。
结论
要正确应用高阻抗无源探头,就需要掌握有关测试问题和技术的基本知识,还需要具备一些经验,此类探头是一种很好的通用工具,用于将示波器连接到测试电路。请记住,它们并不是探测问题的唯一解决方案,但提供了经济高效的着手点。
免责声明:各个作者和/或论坛参与者在本网站发表的观点、看法和意见不代表 DigiKey 的观点、看法和意见,也不代表 DigiKey 官方政策。