IGBT 的特点
IGBT 具有栅极、集电极、发射极3个引脚。栅极与 MOSFET 相同,集电极和发射极与双极晶体管相同。IGBT与MOSFET一样通过电压控制端口,在N沟道型的情况下,对于发射极而言,在栅极施加正电压时,集电极-发射极导通,流过集电极电流。我们将另行介绍其工作和驱动方法。
图1. IGBT 电路图符号
IGBT 是结合了 MOSFET 和双极晶体管优点的晶体管。MOSFET 由于栅极是隔离的,因此具有输入阻抗高、开关速度较快的优点,但缺点是在高电压时导通电阻较高。双极晶体管即使在高电压条件下导通电阻也很低,但存在输入阻抗低和开关速度慢的缺点。通过弥补这两种器件各自的缺点,IGBT成为一种具有高输入阻抗、开关速度快 (IGBT开关速度比MOSFET慢,但仍比双极晶体管快。) ,即使在高电压条件下也能实现低导通电阻的晶体管。
IGBT 的工作原理
当向发射极施加正的集电极电压VCE,同时向发射极施加正的栅极电压VGE时,IGBT便能导通,集电极和发射极导通,集电极电流IC流过。
图2. IGBT近似的等效电路
IGBT 的等效电路如上图所示。当栅极-发射极(G-E)和集电极-发射极(C-E)通路均发生正偏置时,N沟道MOSFET导通,导致漏极电流流动。该漏极电流也流向QPNP的基极并导致IGBT导通。由于QPNP的直流电流增益(α)非常小,因此几乎整个发射极电流(IE(pnp))都作为基极电流(IB(pnp))流动。但部分IE(pnp)会作为集电极电流(IC(pnp))流动。IC(pnp)无法开启QNPN,因为它绕过了QNPN基极和发射极之间插入的RBE。
因此,IGBT的几乎所有集电极电流都通过QPNP的发射极-基极通路作为N沟道MOSFET的漏极电流流动。此时,空穴从QPNP的发射极注入到N通道MOSFET的高电阻漂移层。这导致漂移层的电阻率(Rd(MOS))大大降低,从而降低了导通期间的导通电阻。这种现象称为电导率调制。
关闭栅极(G)信号会导致N沟道MOSFET关断,从而导致IGBT关断。