氮化镓 (GaN) 具更高的电子迁移率使之更适合于高性能、高频率应用。氮化镓场效应晶体管 (GaN FET) 实现了更快的开关速度和更高的工作频率,从而改善了信号控制,实现了截止频率更高的无源滤波器设计,并降低了纹波电流。这样就可以使用更小的电感、电容和变压器,从而减少了整体尺寸和重量。
GaN FET 被称为高电子迁移率晶体管 (HEMT)。高电子迁移率是 FET 结构的一个功能(图 1)。
图 1:基于硅基底的 GaN FET 横截面图。(图片来源:Nexperia)
GaN FET 利用的是现有的硅 CMOS 生产设施,因此性价比高。在纯 GaN 层生长之前,通过沉积种子层和作为隔离层的氮化镓铝 (AlGaN) 缓变层(图中未显示),在硅基底上形成氮化镓层。第二个 AlGaN 层则沉积在 GaN 层上面。这样就建立了压电极化,紧接着在 AlGaN 下面产生过量的电子,这是一个高度导电的通道。这种过量的电子称为二维电子气 (2DEG)。这个名字反映了在该层中有非常高的电子迁移率。
栅极下面形成了一个耗尽区。栅极的操作类似于一个 N 沟道、增强模式功率硅 MOSFET。在该器件栅极施加一个正电压即可导通。
重复多次这种结构,即可形成一个电源器件。最终形成一个绝对简单、优雅的高性价比电源开关解决方案。
为了让器件电压更高,可增加漏极和栅极之间的距离。由于 GaN 2DEG 的电阻率非常低,与硅器件相比,增加阻断电压能力对导通电阻的影响要小得多。
GaN FET 的工作模式可以构造为两种配置,即增强模式或耗尽模式。增强模式 FET 是常闭的,因此必须在栅极上施加相对于漏极/源极的正电压,以使 FET 导通。耗尽型 FET 是常开的,因此必须施加相对于漏极/源极的负栅极电压来关断 FET。耗尽型 FET 在电源系统中是有问题的,因为在给系统通电之前,必须对氮化镓耗尽型 FET 施加负偏压。
解决这个问题的一个方法是将低压硅 FET 与耗尽型 GaN FET 组合在一个共源共栅放大电路配置中(图 2)。
图 2:低压硅 MOSFET 与耗尽型 GaN FET 的共源共栅配置 (图片来源:Nexperia)
共源共栅放大电路采用了 Si MOSFET 栅极结构,其优点是与现有的 MOSFET 栅极驱动器 IC 相匹配的栅极驱动极限更高,而且耗尽型 GaN FET 在上电时是关断的。
GaN FET 的主要特点之一就是其高效率。这是由于:低串联电阻降低了传导损耗;它们的开关速度较快,降低了开关损耗;以及它们的反向恢复电荷较少,这也是它们的反向恢复损耗较低的原因。
使用常见的半桥升压转换器拓扑时,可以比较 GaN FET 和 Si MOSFET 的效率差异(图 3)。
图 3:图示为一个半桥升压转换器的原理图,用于比较 Si MOSFET 和 GaN FET 的效率,通过用每种类型器件替换晶体管 Q1 和 Q2 即可。(图片来源:Nexperia)
升压转换器的输入电压为 240 伏,输出电压为 400 伏,开关频率为 100 千赫 (kHz)。在最高 3500 瓦的功率范围内比较了它们的效率和损失(图 4)。
图 4:在一个相同的电路中,对 GaN FET 和 Si MOSFET 的效率和功率损耗进行比较,显示了 GaN FET 的优势。(图片来源:Nexperia)
与 MOSFET 相比, GaN FET 的工作效率高约 20%,功率损耗低约 3 倍。在 2000 瓦时,MOSFET 的损耗约为 62 瓦;在 GaN FET 中,损耗仅为 19 瓦。这意味着冷却系统可以更小,从而提高升压转换器的体积效率。
不太明显的是,由于 GaN FET 的最大电压限制较高,因此测量功率几乎进行到了3500 瓦。因此,GaN FET 具有绝对优势。
对于高电压应用,Nexperia 两款 650 伏的 GaN FET:GAN063-650WSAQ 和 GAN041-650WSBQ。两者均为常闭型 N 沟道场效应管。GAN063-650WSAQ 处理的额定最大漏源电压为 650 伏,可承受 800 伏的瞬态(脉冲宽度小于一微秒)。其额定漏电流为 34.5 安培 (A),在 25℃ 时的功率耗散为 143 瓦。漏源导通电阻通常为 50 毫欧 (mΩ),最大极限为 60 mΩ。
GAN041-650WSBQ 具有相同的 650 伏额定最大漏源电压和 800 伏瞬态极限电压。其不同之处在于,在室温下可以处理 47.2 A 的最大漏电流和 187 瓦的最大功率耗散。其典型的通道电阻为 35 mΩ,最大为 41 mΩ。