在致动器驱动和闭环控制中使用电流 DAC 的原因和方法

作者:Bill Schweber

投稿人:DigiKey 北美编辑

随着电子产品的普及,人们希望将数字系统与模拟世界连接起来以实现变化,因而对数模转换器 (DAC) 的需求也日益增长。虽然设计人员很熟悉传统的电压输出 DAC,但是许多应用却需要使用电流输出 DAC,以提供精确、稳定的高分辨率电流(数十或数百毫安)来控制低阻抗电阻、电感和电抗性负载。

尽管这些负载可以由电压驱动,但是对于这些传感器而言,使用电流源或驱动器却更有效、更精确。不过,电流输出 DAC 并非电压输出 DAC 的简单“直接”替代品。

本文简要说明为什么电流输出 DAC 是行之有效且往往必不可少的解决方案。此外,本文还以 Analog Devices 推出的两款 IC:6 通道 14 位的 AD5770R 和 5 通道 16/12 位的 LTC2662 为例,着重介绍了电流输出 DAC 的有效使用方法。

DAC 对比 ADC

DAC 是模数转换器 (ADC) 的功能补充,但两者面临的挑战却截然不同。ADC 的主要作用是在存在外部和内部噪声的情况下,将未知的随机输入信号连续数字化,并将结果传输到兼容的处理器。不同于 ADC,DAC 的输入是来自处理器的稳定且有界的数字信号,不存在信噪比 (SNR) 问题。然而,DAC 输出却面临驱动外部负载的挑战,就电气上而言,这或许更为困难。

电流输出 DAC 对比电压输出 DAC

某些传感器和控制回路需要接入 DAC 来精确控制电流。这些应用包括扬声器线圈、螺线管和电机;开环和闭环工业系统、科学系统和光学系统中与控制相关的设置;基本电阻加热器或精密可调谐激光器;自动测试设备 (ATE) 探针刺激;用于电池充电的精密电流输出;以及可调光 LED(图 1)。

Analog Devices 的 LT2662 多通道 DAC 示意图图 1:电流输出 DAC 适合于光放大器节点等应用,可控制光放大器、可调谐激光器和温度恒定的激光加热器,本图以 LT2662 多通道 DAC 为例。(图片来源:Analog Devices)

这些往往都是低阻抗电阻、电感和磁性负载。虽然这些负载也可以由电压驱动,但是电压与端部效应的关系较为复杂,并且通常呈非线性。因此,对于这类传感器而言,使用电流源更有效、更精确。

设计人员往往不太熟悉如何使用电流输出 DAC 产生精密电流输出。一种将传统的电压输出 DAC 转换为电流输出器件的方法是,添加配置为电压-电流 (V/I) 转换器的输出运算放大器(图 2)。

运算放大器(左)或带 MOSFET 升压输出的运算放大器(右)示意图图 2:使用运算放大器(左)或带 MOSFET 升压输出的运算放大器(右),可将电压源转换为电流源,但是相较于实际采用电流输出 DAC 的设计,可能相对难以实现,或在技术上差强人意。(图片来源:Analog Devices)

然而,采用这种方法需要在材料清单 (BOM) 和印刷电路板上添加更多有源和无源元器件,并且运算放大器必须具有良好的拉/灌电流能力,否则就必须使用 MOSFET 升压。此外,由于添加了更多具有独立规格的有源元器件以及无源元器件,因此整个输出范围和温度范围内的数字输入/电流输出传递函数的误差预算就变得愈加困难。

解决问题

无论是电流输出还是电压输出器件,最初 DAC 大多都是由分辨率和更新速度来定义。电流输出 DAC 通常不用于信号处理/分析或波形生成。此外,由于其机电特性或热特性,电流输出 DAC 的典型负载变化通常相对较慢。因此,这类 DAC 的分辨率范围为 12 位至 16 位,更新速率为每秒数十或数百千次采样。

不过,选择或使用电流输出 DAC 时,用户必须注意并解决使用电压输出 DAC 时可能不存在的一些关键问题:

  1. 顺从电压和压差
  2. 电流驱动范围和分辨率(增强这两种特性)
  3. 上电复位 (POR) 和输出毛刺等瞬态条件
  4. DAC 数据和输出完整性;精度
  5. 散热

下面将以 AD5770R 和 LTC2662 为例,详细探讨这些设计问题。

1.顺从电压和压差

除了 DAC 常规线性度和精度规格外,电流输出 DAC 还有两个参数是电压输出 DAC 所不具备的:顺从电压和压差。

顺从电压是电流源输出所需电流时所能达到的最大电压——一种基本却十分关键的情形。只要负载两端的电压在设计限制范围内,电流源就可以驱动负载;要想使用电流源输出的电流驱动负载,就必然会在负载两端施加所需电压。电流源可调节输出电压,为负载提供所需的电流。

例如,以 10 mA 电流驱动 1 kΩ 负载需要至少 10 V 的顺从电压。如果该电压降超过顺从电压,则 DAC 将无法输出该电流。与之相对,如果负载电流超过电压源的额定电流,则电压源也无法提供标称电源电压。

假设用 DAC(或任何电流源)驱动串联的 10 个 LED,每个 LED 上的电压降为 1.5 V,电流为 20 mA。如果电流源不能在 15 V 直流电压(加上部分裕量)下输出 20 mA 电流,就无法输出该电流,即使在较低电压下可以轻松实现也无济于事。对于电流输出 DAC 而言,顺从电压越接近 DAC 输出级电源轨,DAC 输出范围越大。

为什么要讨论顺从电压?尽管这是电流源的基本特性(根据 V=IR),但是某些资历尚浅的工程师只处理过电压源,因而经常忽略这一问题。毕竟,若工程师听说需要 12 V 电源,第一个问题往往都是“电流是多少”。然而,对于电流源而言,相应问题应该是“顺从电压是多少”,却常常受到忽略。

电流输出 DAC 的顺从电压并不受 DAC 自身电源轨的限制。例如,多通道 LTC2662 的每个通道都有独立的电源引脚,使各通道的顺从电压都能与负载需求相匹配,同时又能最大限度地降低总耗散功率。

此外,电流输出 DAC 也具有压差限制,即 DAC 所需的最小压降以维持输出调节。压差是负载电流的函数;压差越小,DAC 的工作范围越宽。5 通道 LTC2662 的电流输出具有高顺从电压,输出 200 mA 电流时可保证 1 V 压差(图 3)。

Analog Devices 的 LTC2662 压差图图 3:在整个电流输出范围内,LTC2662 的压差都低于 1 V,确保所有输出电流值时都有足够的工作裕量。(图片来源:Analog Devices)

2.电流驱动范围和分辨率(增强这两种特性)

电流输出 DAC 的输出驱动能力可达数百毫安。请注意,电流输出 DAC 通常设计为拉出电流,而非灌入电流;但是如果需要灌入电流,也有相应的通道可供使用(只是必须遵守附加限制)。

多通道多输出范围 DAC 具有两个属性:为了输出更高的总电流,允许将输出叠加;可实现各通道分辨率与应用的最佳匹配。通过这种方式,就能最大限度地有效利用分辨率,而非局限于 DAC 的部分动态范围而造成浪费。这相当于在 ADC 输入端使用可编程增益放大器 (PGA),调节输入信号以适应 ADC 的输入范围。若使用输出范围为 100 mA 的 14 位电流输出 DAC 用于 0 至 25 mA 的驱动范围,只能提供 12 位有效分辨率,浪费了 2 位。

因此,AD5770R 和 LTC2662 的多路输出提供了不同的输出范围。例如,AD5770R 包含 5 个 14 位电流源通道和 1 个 14 位拉/灌通道(图 4)。

Analog Devices 的 AD5770R 6 通道 14 位电流输出 DAC 示意图图 4:Analog Devices 的 AD5770R 是一款 6 通道 14 位电流输出 DAC,具有片上基准电压源和串行外设接口 (SPI),以及许多其他特性和功能。(图片来源:Analog Devices)

通道配置如下:

通道 0:0 mA 至 300 mA,-60 mA 至 +300 mA,-60 mA 至 0 mA

通道 1:0 mA 至 140 mA,0 mA 至 250 mA

通道 2:0 mA 至 55 mA,0 mA 至 150 mA

通道 3、通道 4、通道 5:0 mA 至 45 mA,0 mA 至 100 mA

这种配置具有多种驱动优势,可用于多种用途:

  • 为增加最大驱动电流提供便捷的解决方案
  • 最大输出范围较小但分辨率相同,因而步长虽较小,但输出的电流更精确
  • 允许组合输出以获得低/高分辨率

就第一点而言,这些电流源可以简单地并联。例如,AD5770R 的通道 1 (250 mA) 和通道 2 (150 mA) 叠加,可以提供 400 mA 的总驱动(图 5)。当然,设计人员不能忽视以下警告:顺从电压必须在规格书规定的范围内;输出电压必须保持在规格书规定的最大绝对额定值范围内。

250 mA 电流源和 150 mA 电流源可提供 400 mA 可完全轻松控制的电流示意图图 5:这些 DAC 的输出可以并联组合,因此可轻易提供大电流;本图中,250 mA 电流源和 150 mA 电流源可提供 400 mA 可完全轻松控制的电流。(图片来源:Analog Devices)

同样,5 通道 LTC2662 具有八个电流范围,各通道均可编程,满量程输出达 300 mA、200 mA、100 mA、50 mA、25 mA、12.5 mA、6.25 mA 和 3.125 mA;这些电流均可组合,最大输出电流可达 1.5 A。

借助低分辨率和高分辨率设置(上述第三点,即最后一点),并行输出还能提供一种简便方法来提高所需标称输出值的整体分辨率。将一路宽范围输出与另一路小范围输出并联,前者可设为低分辨率,而后者设为高分辨率,以此提供的分辨率即可超出各通道的 12/16 位额定值(但必须占用 5 通道中的 2 个)。

3.上电复位 (POR) 和输出毛刺等瞬态条件

许多应用中,上电时的 DAC 输出(称为上电复位,POR)是个难题,因为处理器(及其软件)无法立即初始化 DAC。虽然在处理器代码中 DAC 初始化具有最高优先级,但是具有多个直流电源轨的处理器启动时间可能比简单的 DAC 更长。

处理器与 DAC 的启动时间差可能导致不可接受的 DAC 输出——例如,使用 DAC 控制活动元件的情况。因此,了解 POR 时 DAC 通道的状态就显得尤为重要。基于上述原因,LTC2662 的输出在上电时复位为高阻态,使系统初始化保持一致且可重复。AD5770R 具有异步复位引脚,可由硬件定时器或复位锁定驱动;将引脚置为逻辑低电平 10 ns 以上,即可将所有寄存器复位为默认值。

此外,输出转换时的毛刺可能也是个难题。每当 DAC 加载新代码模式的数据位时,由于两种代码间存在时钟偏移,因而在新旧代码转换过程中,DAC 会产生错误输出;与 POR 一样,这可能也不可接受。为避免这种情况,LT2662 和 AD5770 将 DAC 加载的缓冲数据增加一倍。单个或多个通道的所有数据位均可写入相应的输入寄存器,而不会影响 DAC 输出。向器件发出“加载 DAC”的单一命令,即可将输入寄存器内容发送到 DAC 寄存器,更新 DAC 输出而不会出现毛刺。

4.DAC 数据和输出完整性;精度

这类 DAC 所适用的应用大多具有活动元件和机械元件,因此或许有必要验证 DAC 的性能。这就需要注意 DAC 的数字输入及实际电流输出值。

针对完整性问题,AD5770R 和 LTC2662 等高级 DAC 可提供多种解决方案:数据回读、基于内部循环冗余校验 (CRC) 的数据完整性确认以及间接输出电流测量。前两种用于发送到并存储于 DAC 的数据确认;第三种用于监视 DAC 产生的电流。

由于软件必须启动回读并将其值与原始发送值进行比较,因此基本数据回读需要处理器操作,并会产生 CPU 负载。但是,AD5770R 的内置 CRC 功能并不会造成负担。AD5770R 对片上数据寄存器定期执行后台 CRC 操作,确保存储器位不会损坏。如果确定存在数据错误,就会在状态寄存器中设置报警标志位。

确保 DAC 性能可靠性的最终测试是测量输出电流和顺从电压值。AD5770R 和 LTC2662 均具有诊断功能,允许用户通过多路电压来监控所对应的这些参数。用户可以选择多路复用器输出对应的电压,从而使用外部 ADC 进行测量。对于 AD5770R 而言,电流监控可精确到满量程输出范围 10% 以内,足以确定过失误差和故障。如果设计人员需要输出监控精度更高,则可以校准读数。

DAC 输出的绝对精度很大程度上取决于基准电压源和一些内部精密电阻的性能。AD5770R 包括 1.25 V 基准电压源,最大温度系数为 15 ppm/℃;LTC2662 的 1.25 V 基准电压源则为 10 ppm/℃。借助这些 DAC 中精密基准电压源的性能,设计人员可以更轻松地实现整个系统的精度目标,因为这些基准电压源也可供外部使用(增加外部缓冲即可)。

规格值分别为 10 ppm/℃ 和 15 ppm/℃ 的内部基准电压源可能完全足以应付多数情况。但是,考虑到这些 DAC 宽泛的工作温度范围(AD5770R:-40℃ 至 +105℃,LTC2662:-40℃ 至 125℃),基准电压源在某些情况下可能会因温度导致偏移过大。

这两款 DAC 均提供了解决方案:可使用外部基准电压源,并为该基准源提供内部缓冲器。如果需要的温度系数较小,也可以选择低漂移基准电压源,如 LTC6655(温度系数为 2 ppm/℃)。使用这种高性能外部基准电压源并非易事:需要格外注意电路板布局、机械应力、生产焊接温度曲线及其他易于损害特定性能的细节。

5.散热

务必谨记这些 DAC 均以受控电流的形式为负载供电。因此,IC 耗散和自热都是必须分析的问题,确保不会超过内部芯片的最大允许温度。在多数情况下,需要通过印刷电路板来散热,其中使用 IC 焊球作为热导管。

热分析时,首先分析各通道的峰值电流、平均电流及其相关耗散。然后对 IC 到电路板的路径和电路板的散热能力进行热建模(例如层数、可用铜面积以及使用相同散热区域的其他元件)。AD5770R(使用 2.9 V 至 5.5 V 单电源供电)规格书上提供的计算示例显示,多路输出均提供指定电流时某环境温度下的功耗。设计人员可以此为指南并针对具体情况进行初步分析。

为了避免不必要的耗散,LTC2662 的各输出通道均具有独立电源引脚。各通道均可由 2.85 V 至 33 V 的独立电源供电,从而针对各种负载调节各通道的耗散功率和顺从电流裕量。

综合应用

尽管概念很简单,但是 AD5770R 和 LTC2662 等多通道电流输出 DAC 具有大量的寄存器,可用于控制范围设置、数据加载、回读和标志位等基本功能。除了 SPI 总线和 DAC 输出所需的物理连接外,还具有许多其他选项。

基于上述原因,使用评估板(例如适用于 LTC2662 及相关软件DC2629A-A)可以节省时间并最大限度地减少烦恼,同时还可以在实际应用场景中简化 DAC 的性能评估(图 6)。

Analog Devices 推出适用于 LTC2662 电流源 DAC 的 DC2629A-A 评估板示意图图 6:演示电路和评估板(例如适用于 LTC2662 电流源 DAC 的 DC2629A-A)简化了连接,允许随时使用多通道电流输出 DAC 的众多功能和特性。(图片来源:Analog Devices)

该评估板专为 16 位 LTC2662 设计,简化了与 DAC 的连接,并且可以评估外部基准电压源的使用等可选特性。该演示电路通过 USB 电缆连接用户的计算机。

随附软件的 GUI 控制面板可用于执行 DAC,轻松使用所有特性和功能(图 7)。

Analog Devices 的 LTC2662 DAC 评估软件和 GUI 图片图 7:通过 USB 连接计算机,评估软件和 GUI 可用于设置和执行 LTC2662 DAC 的多数寄存器和选项——这是设计工作中不可或缺的一个过程。(图片来源:Analog Devices)

总结

电流输出 DAC 虽不如电压输出 DAC 广为人知,但是对于许多实际应用和负载而言都是不可或缺的器件。这类 DAC,尤其是 Analog Devices 的 AD5770R 和 LTC2662 等输出电流较大的多通道器件,可提供众多功能和用户设置,使设计人员能够在目标应用中优化其适配性和性能。用户若能了解这类 DAC 及其特性,必能受益于其功能和特性。

免责声明:各个作者和/或论坛参与者在本网站发表的观点、看法和意见不代表 DigiKey 的观点、看法和意见,也不代表 DigiKey 官方政策。

关于此作者

Bill Schweber

Bill Schweber 是一名电子工程师,撰写了三本关于电子通信系统的教科书,以及数百篇技术文章、意见专栏和产品特性说明。他担任过 EE Times 的多个特定主题网站的技术管理员,以及 EDN 的执行编辑和模拟技术编辑。

在 Analog Devices, Inc.(模拟和混合信号 IC 的领先供应商)工作期间,Bill 从事营销传播(公共关系),对技术公关职能的两个方面均很熟悉,即向媒体展示公司产品、业务事例并发布消息,同时接收此类信息。

担任 Analog 营销传播职位之前,Bill 在该公司颇受推崇的技术期刊担任副主编,并且还在公司的产品营销和应用工程部门工作过。在此之前,Bill 曾在 Instron Corp. 工作,从事材料测试机器控制的实际模拟和电源电路设计及系统集成。

他拥有电气工程硕士学位(马萨诸塞州立大学)和电气工程学士学位(哥伦比亚大学),是注册专业工程师,并持有高级业余无线电许可证。Bill 还规划、撰写并讲授了关于各种工程主题的在线课程,包括 MOSFET 基础知识、ADC 选择和驱动 LED。

关于此出版商

DigiKey 北美编辑