

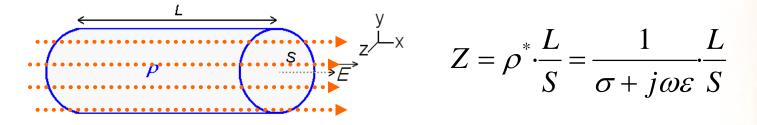
AFE4300: Analog Front End for Body Composition / Weigh Scales

Texas Instruments

Introduction

- Purpose
 - To introduce TI's AFE4300 for body composition / weigh scale applications
- Objectives
 - To discuss AFE4300's features and benefits
- Content
 - Bio-Impedance measurement & its applications
 - Body Composition Measurements
 - Parameters
 - Methods
 - Estimators
 - Sensors
 - Instrumentation
 - AFE4300 : Integrated AFE for Body composition measurements
 - Evaluation Module and wireless demo

What is Bio-Impedance Measurement?

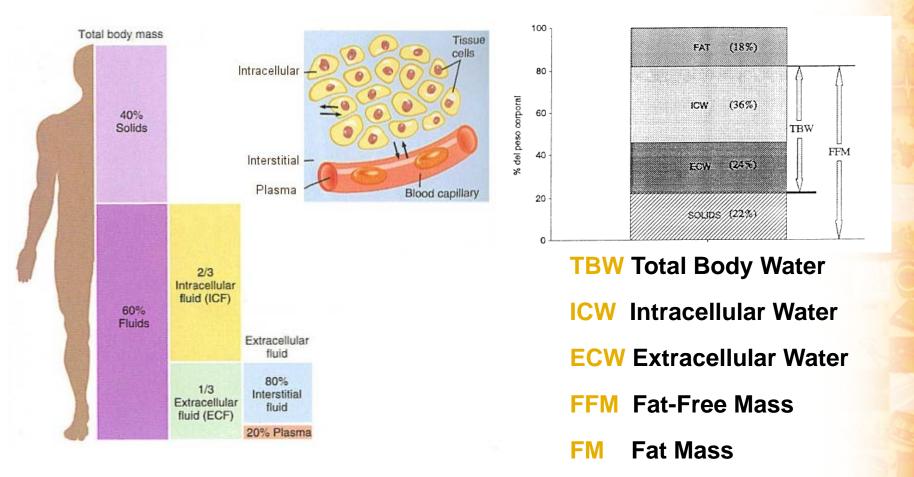

- Measurement of passive electrical properties of biological materials.
- Non-invasive, non destructive technique
- High sensitivity, low specificity
- Low cost

Texas Instruments

Electrical impedance of Biological Materials

Intrinsic material properties + geometrical factors

- We can detect macroscopic changes due to
 - Dimensions (volume changes)
 - Composition (cell type, size, density, homogeneity)
 - Fluids (accumulation, shift)


Texas Instruments

Applications for Bio-Impedance Analysis

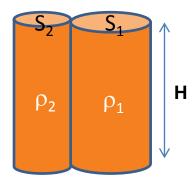
- Detection of volume changes (Respiration with Impedance pneumography, apnea detection)
- Tissue characterization (Ischemia detection : lack of oxygen)
- Cell culture monitoring
- Electrical Impedance Tomography
- Measurement of body composition

Measurement of Body Composition

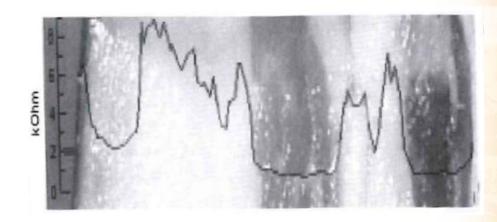
Body composition characterization by impedance measurement

Basic approach

$$P \qquad H \qquad R = \rho \frac{H}{S} \qquad V = \rho \frac{H^2}{R} \qquad Conducting volume: TBW$$

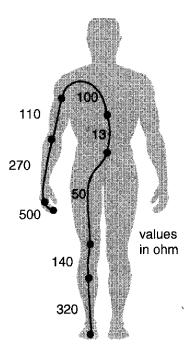

- Given a hydration coefficient of 73%, FFM = TBW/0.73
- The body is not a cylinder and is not homogeneous:

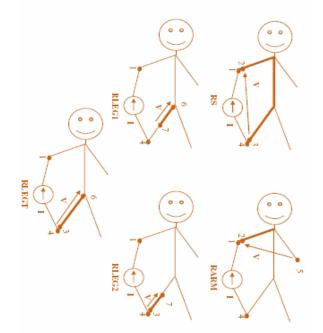
$$TBW = k_1 \frac{H^2}{R} + k_2$$
 $TBW = k_1 \frac{H^2}{R} + k_2 W + k_3$


Body composition characterization by impedance measurement .. cont

The fat has much lower conductivity than the other tissues: double compartment model

$$R = R_1 || R_2 \approx R_1$$


FM = W - FFM

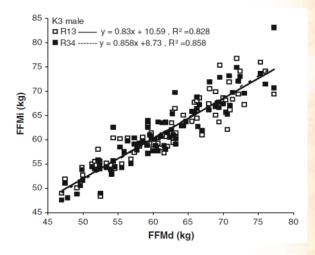


BCM Measurement methods

Segmental impedance analysis

Hand to Hand, Foot to Foot, Hand to Foot measurements

TEXAS INSTRUMENTS


Measurement of Body Composition

- Basic measurement approaches and estimators are enough for normally hydrated subjects
- They give large errors in subjects with fluid and electrolyte abnormalities (dialysis, pregnant, children, elderly, ...)
- High-end medical devices need more accurate measurement methods and estimators
- Several low-end home scales provide advanced estimators

Advanced Estimators

Boy fat-free-mass (FFM) is generally calculated by a linear regression of height, weight, and age, which is determined by comparison with dual Xray absorptiometry (DXA) or Deuterium dilution or densitometry (under water weighing)

Determination of FFM

$$FFM = a_1 H^2 / R + b_1 W + c_1 (Age) + C_{t1}$$

or

$$FFM = a_2H^2 / R + b_2W + c_2(Age) + d_2X + C_{t2}$$

Determination of FM

$$FM = W - FFM$$

X reactance *a, b, c, d* coefficients *Ct* constant

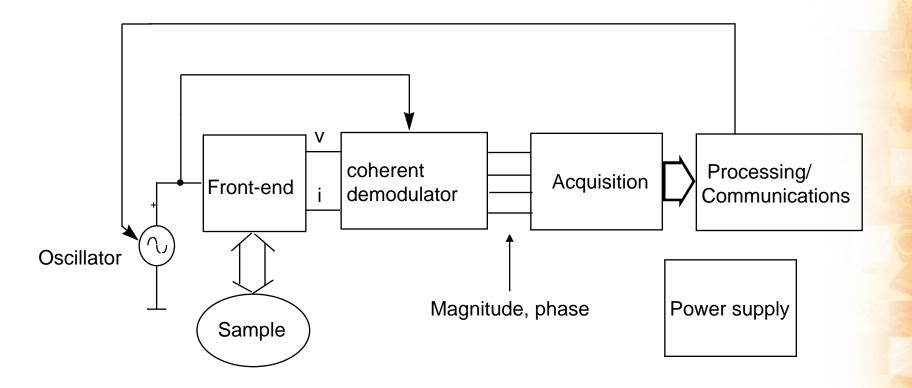
Advanced Estimators – Published Equations

Table 1 Bioelectrical impedance analysis equation reported in the literature since 1990 for fat-free mass (FFM) classified according to subject category (adult, elderly, overweight) and standard error of the estimate (SEE).


Population	Source	n	Criterion measure	Equation	r²	SEE*	BIA instrument
Adults							
Healthy subjects, 18–94 yr	Kyle et al. ⁷⁴	343	DXA	-4.104 + 0.518 Ht ² /R ₅₀ +0.231 weight +0.130 Xc + 4.229 sex	0.97	1.8	Xitron
Healthy adults, 18–29 yr	Lohman ⁷⁵	153	Densitometry ^{85,†}	Women = $5.49 + 0.476 \text{ Ht}^2/R_{50}$ +0.295 weight	NR	2.1	Valhalla
Healthy adults, 30–49 vr	Lohman ⁷⁵	122	Densitometry ^{85,†}	Women = $11.59 + 0.493 \text{ Ht}^2/R_{50}$ +0.141 weight	NR	2.5	Valhalla
Healthy, ethnic divers	Kotler et al. SF parallel ⁵⁸	126	DXA	Women = $+0.07 + 0.88 (Ht^{197}/Z_{50}^{049})$ (1.0/22.22) + 0.081 weight	0.71	6.56% (≈2.6)	RJL-101
Healthy subjects, >16 yr	Deurenberg et al. ⁷⁶	661	Multi-C, ⁸⁷ densitometry ^{86,‡}	-12.44 + 0.34 Ht ² /R ₅₀ +0.1534 height +0.273 weight - 0.127 age + 4.56 sex	0.93	2.6	RJL-101
Healthy subjects, 12–71 yr	Boulier et al. ⁶	202	Densitometry	6.37 + 0.64 weight + 0.40 Ht ² /Z _{1 MHz} - 0.16 age -2.71 sex (men = 1, women = 2)	0.92	2.6	IMP BO-1
Women 18-60 yr	Stolarczyk et al. 77	95	Multi-C [§]	20.05 - 0.04904 R ₃₀ +0.001254 Ht ² +0.1555 weight + 0.1417 Xc - 0.0833 age	0.75	2.6	Valhalla
Healthy adults, 50-70 yr	Lohman ⁷⁵	72	Densitometry ^{85,†}	Women = $6.34 + 0.474$ Ht ² / R_{50} +0.180 weight	NR	2.8	Valhalla
Healthy adults, 18–29 yr	Lohman ⁷⁵	153	Densitometry ^{85,†}	${\rm Men} = 5.32 \pm 0.485 \ {\rm Ht}^2/{\rm R_{50}} \pm 0.338 \ {\rm weight}$	NR	2.9	Valhalla
Healthy subjects, 12–94 yr	Sun et al. ⁷⁰	1095	Multi-C	Women: -9.529 + 0.696 Ht ² /R ₅₀ +0.168 weight + 0.016 R ₅₀	0.83	2.9*	
Healthy, ethnic divers	Kotler et al. SF parallel ⁵⁸	206	DXA	$Men = +0.49 + 0.50 (Ht^{1.48}/Z_{50}^{0.55})$ (1.0/1.21) + 0.42 weight	0.92	5.45% (≈3.2)	RJL-101
Healthy adults, 30–49 yr	Lohman ⁷⁵	111	Densitometry ^{85,†}	$Men = 4.51 + 0.549 \text{ Ht}^2/R_{50}$ +0.163 weight + 0.092 Xc	NR	3.2	Valhalla
Healthy subjects, 35–65 vr	Heitmann ⁷⁸	139	Multi-C, ^{88 3} H ₂ O, TBK	-14.94 + 0.279 Ht ² /R ₅₀ +0.181 weight +0.231 height + 0.064 (sex weight) - 0.077 age	0.90	3.6	RJL-103
Healthy adults, 50–70 yr	Lohman ⁷⁵	74	Densitometry ^{85,†}	Men = -11.41 + 0.600 Ht ² /R ₅₀ +0.186 weight + 0.226 Xc	NR	3.6	Valhalla
Healthy subjects, 12–94 yr	Sun et al. ⁷⁰	734	4 compart	Men : -10.678 + 0.652 Ht ² /R ₅₀ +0.262 weight + 0.015 R	0.90	3.9°	RJL-101

BCM Instrumentation: Sensors

- Electrodes: Interface between the measurement system and the biological material
 - Electrochemical electrodes Ag-AgCI (body applications)
 - Capacitive coupling metallic surface-tissue (samples, home applications)



BCM Instrumentation: Block Diagram

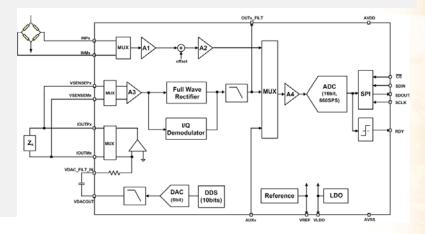
AFE4300

Weight Scale / Body Composition Analog Front End

Features

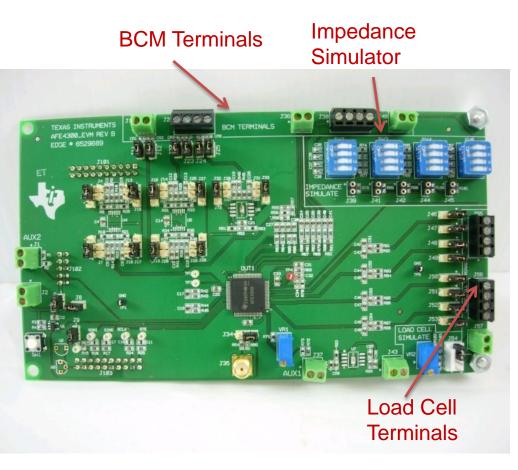
Weigh Scale

- Supports four bridge inputs
 - 1.7V, 20mA LDO single output with enable/disable (50ms switching time).
 - Voltage tied to ADC reference (ratio-metric).
- IA amplifier internal feedback resistors trimmed to +/-5%.
- Gain setting through single external resistor.
- 58nVrms input referred noise from 0.1Hz to 2Hz
- 6b, +/-6.5uA offset correction DAC.

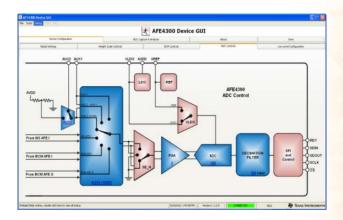

Body Composition

- Supports three tetra-polar impedance measurements
- Supports complex impedance measurement
 - 6b, 1MSPS sine wave generation DAC with integrated pattern memory (DDS).
 - 100KHz 2nd order low pass filter.
 - 375uArms +/-20%1 source.
 - 0.1Ω measurement rms noise in 2Hz BW
 - Supply current: 400uA (without output current).
- Supports SFBIA, MFBIA,
- 16-Bit, 860SPS, ADC multiplexing between
- 2V to 3.6V supply and Low Power

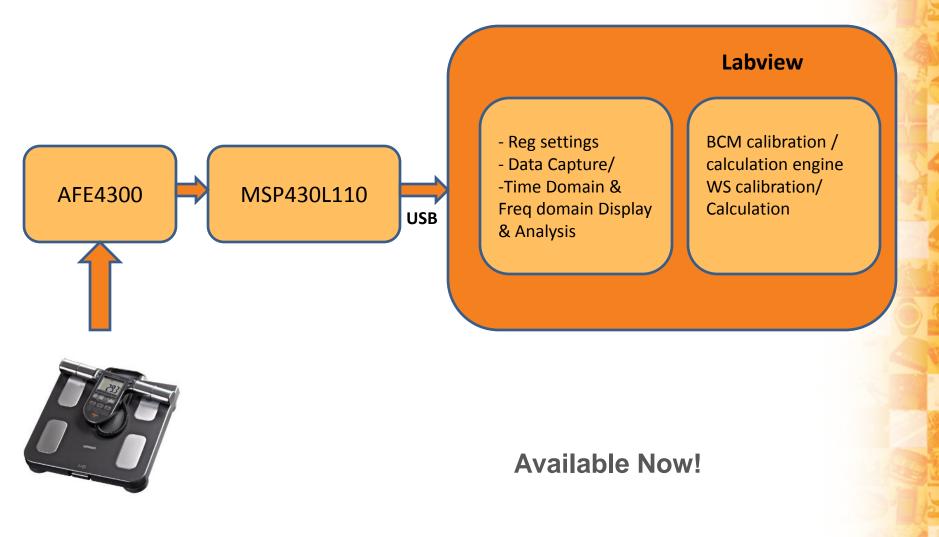
<u>Samples:</u>Now <u>EVM:</u>Now <u>Production:</u>Released


Benefits

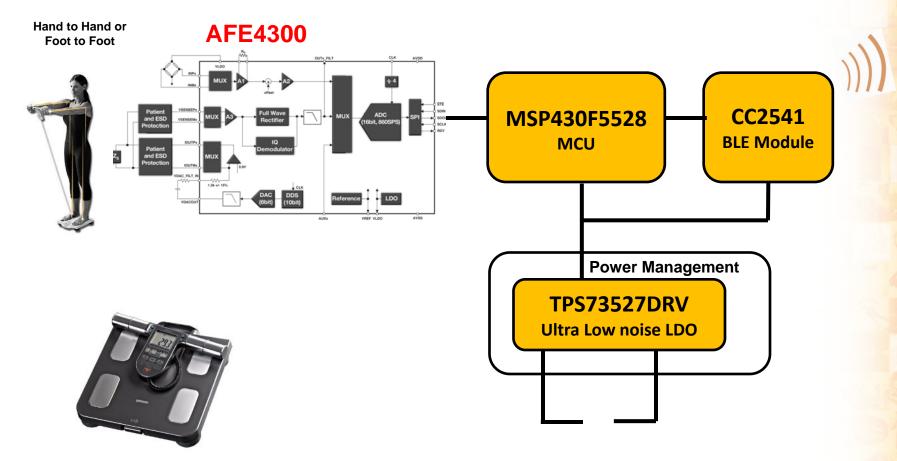
- Easy way to add BMI to weigh scale end equipment
 - faster customer time to market
 - design without in-house expertise
- Improved accuracy vs Discrete solutions
- Segmental BIA for better body part specific measurements
- Eliminates electrode impedance related inaccuracies
- Low power enhances battery lifetime



Body Composition Eval Module


AFE4300EVM-PDK

- Fully functional development Kit
- Support for three tetra-polar impedance measurements
- On-board load cell simulation block
- On-board impedance simulation block
- USB based power and PC application connectivity
- Built-in analysis tools including a virtual oscilloscope, histogram, and FFT on the PC application.


Evaluation Module

TEXAS INSTRUMENTS

Health Hub: Body Composition

Summary

- The AFE4430 is a complete analog front end solution for body composition and weigh scale applications
- Features and Benefits include
 - Complete front end solution = faster time to market
 - Multi-channel and Tetra-polar measurement options = increased accuracy
 - Low power = longer battery
- To learn more or order samples or evaluation module please visit <u>www.ti.com/product/AFE4300</u>

